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HEAT CONDUCTION BETWEEN BODIES WITH 
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Abstract-Theoretical treatment is provided for the conductive heat transfer between two solids with wavy 
surfaces. The problem is set in two dimensions, and it is assumed that the surface profiles are purely 
sinusoidal and deformations elastic. It is also assumed that heat is transmitted only where there is solid to 
solid contact, and there is no resistance due to contamination of the surfaces. The temperature problem 
is solved exactly, but deformations are treated by relying on the results due to Hertz. The expression 
derived for the constriction resistance exhibits a directional effect. It is also shown that perfectly flat 

surfaces may become wavy, as heat is transmitted from one body to another. 

NOMENCLATURE 

amplitude of sinusoidal gap; 
half length of contact; 
normalized half length of contact; 
Heaviside step function; 
thermal conductivity; 
half wave length of surface profile; 
applied pressure; 
force in Hertz formula; 
Legendre polynomial of order n; 
heat flux; 
dimensionless constriction resistance; 
uniaxial compliance in plane strain; 
temperature; 
Cartesian coordinates; 
normalized cartesian coordinates. 

Greek symbols 

coefficient of thermal expansion; 
distortivity ; 
curvature; 
dimensionless heat flux; 
shear modulus; 
Poisson’s ratio; 
dimensionless applied pressure; 
constriction resistance. 

INTRODUCTION 

surface roughness and the elastic or plastic deforma- 
tions of the asperities [I], A characterization of the 
rough surfaces can be done only on a statistical basis, 
but once a statistical description is injected, it becomes 
virtually impossible to solve the pertinent elasticity and 
plasticity problems. 

Exactly the opposite approach is used in the present 
article to discuss the conductive heat transfer between 
two contacting bodies with nominally flat surfaces, and 
the problem is remorselessly idealized to the point 
where it is feasible to solve the full heat conduction 
and elasticity equations. First, the problem is set in two 
dimensions. Second, the gap between the two bodies in 
their undeformed state is taken as purely sinusoidal 
with a wave length that is large in comparison to the 
amplitude. Fu~hermore, the boundary conditions are 
satisfied not on the actual surfaces, but rather on the 
nominal plane of contact. If this is done, it makes no 
difference what the actual surface profiles are, and only 
the gap enters the formulation. Thus Fig. 1 shows one 
of the bodies having a perfectly flat surface, while the 
surface of the other body is sinusoidal. It is also 
assumed that heat is transmitted only where there is 
solid to solid contact, that radiation and the effect of an 
intervening fluid are insignificant, and that there is no 
resistance due to an oxide film or other contamination 
of the surfaces. Finally it is supposed that the global 

TRANSFER of heat between two solids by conduction 
is a problem of some fund~ental and technological 
importance, and it has accordingly received con- 

+ 1 i I 1 i 1 I i iP 

siderable attention over the last two or three decades. i i i i i i i i i i 9” 

While not overwhelming, the amount of literature on 
this topic is extensive, and it would be out of place here 
to attempt summarizing the assumptions and 
approaches used in previous theoretical considerations 
and the results achieved. It might be said without 

k, , a 
c(~ Vu; 

implying criticism of any kind, however, that in seeking 
to include all physically important aspects of the i ; i i 1 i i 4 1 /qm 

problem, analytical tractability has largely been 
forsaken. It is generally recognized, for instance, that t t t t t t t t t tp 

thermal contact resistance is int~ately connected with FIG. 1. Geometry of the problem. 
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warping of the two bodies is suppressed by applying 
suitable forces far away. 

The two solids are pressed together, as indicated in 

Fig. 1, so that the initial point contacts spread over 
finite intervals, and steady state heat conduction is 
established by maintaining a suitable temperature 
difference. The principal problem is to relate the 

constriction resistance to the applied pressure, rate of 
heat flow and the material constants of the two bodies. 
It is convenient in the analysis to view the extent of 
contact ? as a fixed parameter and to compute the 

combination of the applied pressure p and heat flux q7, 
that lead to the given c. The excess temperature 
difference required to drive a given ym through the 
interface with periodic contacts in comparison to full 

contact can also be calculated for a specified C, and 

thus the constriction resistance related to p and q”. 
The associated boundary value problems involve mixed 
conditions. However, taking advantage of the periodic 
nature of the fields, they can be reduced to dual series 

equations which yield to standard techniques. 

TEMPERATURE DISTRIBUTION 

As indicated in Fig. 1, the half wave length of the 
sinusoidal gap is denoted by I, the amplitude by b and 
the extent of contact by 2~. It is expedient to introduce 
the dimensionless coordinates and extent of contact 

x = 7tY/l, .1‘ = X>V/l, c = nc.:/ (1) 

and to use subscripts 1 and 2 for reference to the two 
bodies occupying the regions y > 0 and 4’ < 0, 
respectively. Under steady state conditions, the 
temperature distribution must be harmonic in the 
coordinates x, ~1. The boundary conditions along the 
nominally flat contact interface J = 0 are 

k,$=k2$ o<x<rr, (2) 
‘_ 

T, = T, = 0, Odx<c, (3) 

2T, ST2 
-=o, c<x<?c, 

Fq. Or ay 
(4) 

where k denotes thermal conductivity. The second 

boundary condition (3) may require an explanation: 
The temperature at the origin x = y = 0 can be set 
equal to zero by adjusting the general temperature level. 
It can be reasoned then [2] that the temperature must 

vanish along the whole contact interval 0 < x < c, 
J’ = 0. 

The harmonic functions which are suitable for 
solving the heat conduction problem are 

(5) 

(6) 

It may be noted that these temperature distributions 
have already been adjusted so that they yield consistent 
heat flow rates at infinity, and that the series have the 
correct periodicity to reflect the alternating pattern of 
contacts and gaps. 

Boundary condition (2) gives upon substitution 

B, = -A,,, il = 1,2,... (7) 

The first of the split conditions (3) leads to 

B. = --/lo (8) 

and 

AO+ f A,cosnx = 0, o<x<c. (9) 
?I=1 

Finally the second of the split conditions (4) results in 

P 
1 nA,cosnx= 1, c<x<x. (10) 

n=l 

The solution of the dual series equations (9) and (10) 
for the unknown coefficients A,, (n = 0,1,2,. .) is 

explained in the Appendix. The resulting temperature 
distribution from (5) and (6) is 

Tl = $ y-2log(sin+c) 
1 i 

-~~l~[P~(cosc)+P,,(cos~)]e~nycosnx} (11) 

7” = $ y+2log(sin&) 
2 

+ “z, i [PJcos c)+ P,- I (cos c)] e”’ cos nx (12) 

where P, denotes the Legendre polynomial of order n. 
It is also shown in the Appendix that the temperature 

distribution along the interface y = 0 can be reduced 

to a closed form : 

(T,),=, = ~H(x-c)log[R+J(R’-Ij] (13) 
1 

(T2)y=o = -2$&(x-c)Iog[R+&+l)] (14) 
2 

where 0 < x < 71, H denotes the Heaviside step function 

and 

1 

R= 
s]nTx, 1. 
sinjc’ 

The temperature profiles along a set of x = constant 
lines are shown in Fig. 2 for several extents of contact 

c. 

DEFORMATIONS 

In order to relate the extent of contact C to the applied 
pressure p and the far field heat flux qm it is necessary 
to solve a mixed boundary value problem in thermo- 
elasticity. Although this problem can be reduced to a 
Fredholm integral equation which is amenable to a 

numerical solution, the procedure and results are quite 
complicated. An asymptotic analysis of the thermo- 
elastic solution reveals, however, that accurate results 
for Z < 0.31 can be obtained by simply applying the 
well known theory of Hertz for contact between two 
bodies with cylindrical surfaces. The condition of 
P < 0.3[ is not very restrictive if the deformations are 
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FIG. 2. Temperature profiles for different extents of contact. 

assumed to be purely elastic. If for instance qm = 0 
and the two materials have the same elastic constants, 
the applied pressure required to achieve ? = 0.3 is 
approximately @/l) and the maximum contact 
pressure is roughly p(b/l) [3]. Unless the ratio b/l is 
extremely small, most materials can therefore be 
expected to deform plastically before the extent of 
contact E = 0.31 is reached, if the isothermal solution 
is accepted as a yardstick for making order of 
magnitude assessments. 

The Hertz formula for two cylinders that are pressed 
together is [4] 

c2 = 4P(&+ S2) 

a + K2) 

where C is the half length of contact and P the 
transmitted force per unit length of the cylinders. 
Furthermore, K denotes the local curvature counted 
positive if the cylinder is convex to the outside, and S 
is the uniaxial compliance in plane strain. In terms of 
the shear modulus p and Poisson’s ratio v, 

(17) 

In the present problem, 

P = 2pl. (18) 

The quantity (K~ +K~) in (16) constitutes a mismatch 
in curvatures as the two cylinders are viewed from 
one side. In the absence of heat flow, 

rr2b 
Kl+Kz =p (19) 

as is readily computed from the equation for the 
sinusoidal surface profile. The curvature of a boundary 
is modified, however, by a change in temperature and 
heat flow through the boundary. For plane strain and 
steady state temperature distribution (V2T = 0), the 

change in curvature is [5,6] 

AK = -a(l+v) iq.+KT 
t > 

(20) 

where a is the coefficient of thermal expansion, qn the 
heat flux through the boundary counted positive for 
flow out of the material and T the temperature change. 
Both the original curvature of the boundary K and its 
change AK are reckoned positive for convexity to the 
outside. It may be noted that AK is determined by the 
local values of heat flux and temperature change, and 
that it does not matter what the overall temperature 
distribution is. 

The heat flux through the contact regions is highly 
nonuniform, and there is some question regarding 
which particular value should be used for qn in (20). 
If there were no interference from the flow through the 
adjacent contacts, the distribution of heat flux in the 
contact region would be 

4”W = 
2q”l 

x J(c2-.i2). 

The value at the center of the contact region 

q.(O) = “““’ i 0.64 ““’ 
rrc c 

is clearly an underestimate. The average value 

is likely to overestimate the effect, because the curvature 
change near the middle of the contact region is bound 
to be more important than that near the ends. In the 
absence of a better idea, a compromise between (22) 
and (23) is 0.82 q”l/?. The asymptotic form of the full 
thermoelasticity solution shows that the correct value 
for substitution in (20) is qn = 8q”l/n2t h 0.81 q”l/C:. 
Using this value, the additional mismatch in curvatures 
caused by heat flow is 

K +K = 8Wkb-~,) 
1 2 

r?c (24) 

where 

g=41+4 
k (25) 

The constant 6 defined by (25) may be called the 
distortivity of the material, because it relates the 
distortion of a straight boundary to the local value of 
heat flux. 

Adding the contributions (19) and (24) and 
substituting them together with (18) into the Hertz 
formula leads to the following quadratic equation for 
the determination of the extent of contact: 

rr3b_2 81 
%c +;q=‘(&-&)C-8pl(S1+S2) = 0 (26) 

or 

(27) 
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A=$, B= 
16~47, + S,) > o, 

7-h ’ (28) 

The solution of (27) is 

c = Aq”(6, -6,)+J([Aq”(& -&)]‘f B). (29) 

Whereas the constants A and B are non-negative, the 
term qm(S1 -62) changes sign upon reversal of heat 

flow or interchange of materials. As seen from (29), the 
extent of contact c depends consequently on the 
direction of heat flow unless ~5, - S2 = 0. 

CONSTRICTION RESISTANCE AND 
DIRECTIONAL EFFECT 

The first terms in (11) and (12), which are linear in 

y, correspond to uniform heat flow in two bodies that 
are in perfect contact. The series terms in (11) and (12) 
constitute local disturbances that are due to the 

periodic pattern of contacts and gaps. Their effect is 
negligible at distances from the interface that are large 

in comparison to the wave length of the surface profile. 
The second terms in (11) and (12), which are constant, 
give the additional temperature difference AT that must 
be supplied to drive through the wavy interface the 
same amount of heat as flows in two bodies with 

perfect contact. 
The constriction resistance of the interface is defined 

as 
p = AT/q’ (30) 

and substituting for AT the sum of the second terms in 
(11) and (12) 

21 1 1 
P= --. 71 k+- log(sin$c). 

t J I kz 
(31) 

The resistance p can be related to the applied pressure 
p and heat flux q" by first computing c from (29) for 
given values of p and qm, and then substituting c into 
(31). The results are displayed in Fig. 2 as a dimension- 
less plot, in which 

n =;(S,+S,). (32) 

The general trend seen from the curves is that the 
constriction resistance decreases with increasing 

applied pressure. 
Another noteworthy feature of the results is that, for 

materials with different distortivities, the wavy interface 
exhibits a pronounced directional effect. As mentioned 
before, the extent of contact depends on the direction 
of the imposed heat flux. The constriction resistance, 
being directly related to the extent of contact, then also 
changes upon reversal of the direction in which heat is 
flowing. Figures 3 shows that the directional effect is 
stronger at low applied pressures and high heat fluxes. 
In general, the constriction resistance is lower for heat 
flowing into the material with the lower distortivity. 

A very simple formula for the constriction resistance 

FIG. 3. Interface resistance vs heat flux for different applied 
pressures. 

follows from (29) and (31) if the two bodies are made of 
the same material. Approximating sin)c by $c, 

p =;log*. 
8plS 

(33) 

CONTACT BETWEEN PERFECTLY FLAT 
SURFACES AND LACK OF UNIQUENESS 

Suppose that the amplitude 6 of the wavy surface 
profile is allowed to approach zero in (26). In such case, 
(26) yields the extent of contact 

(34) 

This result indicates that bodies with perfectly flat 
surfaces may not only have the linear temperature 
distribution that corresponds to full contact, but can 
also go into the steady state described by (1 l), (12) and 
(34). Since C must be positive, this is possible only for 

qco(h2 -6,) > 0 or the case when heat flows into the 
material with the higher distortivity. The second state 
may physically be induced by some random 
fluctuations in thermal conditions during the process of 
approaching the steady state or deviations from 
perfectly uniform material properties. Such non- 
uniformities may always be expected to be present. 
The result also indicates that the contact between 
perfectly flat surfaces has no unique solution, when 
heat flows into the material with the higher 
distortivity.* 

It may be noted that the wavelength 1 associated 
with the second possible state remains arbitrary. 
Assuming that all Fourier components are present in 
the initial fluctuations that lead to the periodic steady 
state, the wave length to evolve is likely to be that of 
the fastest growing disturbance in the surface displace- 
ment. However, an analysis of the unsteady state is 
outside the scope of this article. 
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*The possible lack of uniqueness in thermoelastic contact 
problems has been discussed by Barber [2]. 
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APPENDIX 

The dual series equations may be cast into a standard 
form by the substitutions 

x=n-5, c=n-y (Al) 

A,,=)aO, A,=(-l)“a, (A2) 

which change (9) and (10) to 

f na.cosn5 = 1, 0<5<y 
“=I 

fao+f a,cosn<=O, yitG71. (A4) 
“=I 

Following Sneddon [7],* the unknown coefficients a. 
(n = 0, 1,2,. . .) can be found from an auxiliary function 
which for the dual series equations (A3) and (A4) is 

s ssin)sds 

dJ(COSS-cOst)~ (A5) 

With the change of variable s = 2r, the integral in (AS) 
reduces to a known form,t and 

b46) 

*See section 5.4.3. 
tSee No. 3, 3.842-3.847 in [8]. 

The coefficients in the dual series equations are computed 
from the auxiliary function as 

ac = L 
r J2 0 

hi(t)dt = -4log(cos$$ (A7) 

a, = L 
s 

‘h,(t)[P.( 
J2 0 

cost) + P,_ I (cos t)] dt 

=~[P._,(COSy)-P.(COSy)]. W) 

Returning to the original variables, it follows from (Al) and 
(A2) that 

A0 = - 2 log(sin :c) (A9) 

A, = -; [P,(cos c)+ P._, (cos c)] (AW 

which lead to the temperature distribution (11) and (12). 
The temperature along the interface y = 0 in the upper 

half plane is 

-[P,(cosc)+P,_,(cosc)]cosnx 

and 

= 4”’ f [P,(cosc)+ P.- ,(cosc)] sinnx. 
nk,.,, 

6412) 

The series in (A12) can be summed,* and 

= _ &)q”~ cosfxH(x-c) 
(A13) 

)’ 0 nk, J(cos c - cos x) 

2q”l 
(T&o =pH(x-c) 

nk, 
(A14) 

because Tl (0,O) = 0. The integral in (A14) is elementary, 
and (13) and (14) follow directly. 

*See [7], p. 59. 

CONDUCTION THERMIQUE ENTRE SOLIDES PRESENTANT 
UNE SURFACE ONDULEE 

R&me-On presente un traitement theorique du transfert de chaleur par conduction entre deux solides 
presentant une surface ondulee. Le probltme est formule dans deux dimensions et on suppose que le 
profil des surfaces est purement sinusoidal et les deformations elastiques. On suppose egalement que la 
chaleur est transmise seulement aux points de contact des deux solides, et qu’il n’y a pas de resistance 
dOe aux impure& de surface. Le probltme thermique est resolu exactement, mais les deformations sent 
trait&es en s’appuyant sur les r&hats de Hertz. L’expression obtenue pour la resistance a la striction 
presente un effet directionnel. On montre egalement que des surfaces parfaitement planes peuvent devenir 

ondulees lorsque un echange de chaleur s’etablit entre les deux solides. 

WARMELEITUNG ZWISCHEN KGRPERN MIT WELLIGEN OBERFLACHEN 

Zusammenfassung-Der Vorgang der Wlrmeleitung zwischen zwei Festkorpern mit welligen Oberflachen 
wird theoretisch behandelt. Das Problem wird zweidimensional angenommen und es ist vorausgesetzt, 
dab die OberlILhenprofile rein sinusformig und deformationselastisch sind. Es wird weiter vorausgesetzt, 
da13 Warme nur an Festkorper/Festklirper-Kontaktstellen iibertragen wird und dal3 kein Widerstand 
infolge von Verunreinigung der Obertllchen auftritt. Die Temperaturverteilung ist exakt gelost, die 
Deformationen werden aufgrund von Ergebnissen von Hertz behandelt. Der fur den Einschniirungs- 
widerstand abgeleitete Ausdruck zeigt einen Richtungseffekt. Es wird such gezeigt, da0 eine vollkommen 
ebene Obertliiche dann wellig werden kann, wenn Warme von einem Korper auf einen anderen 

iibertragen wird. 
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KOHfiYKTMBHbIfi TEWlOOLMEH MEmAY TEJlAMM C BOIIHMCTOfi 
IlOBEPXHOCTblO 

hHoW~HR-- ~eOpeTw~eCKwp~CCMaTpwBaeTCwKOH~yKTwBHbl~Ten~OO6MeHMe~~y~ByMRTBep~blMw 

TeJlaMw C BOflHwCTOii nOBepXHOCTbl'=. 3anaqa npencTaBneHa KBK nByMepHafl npn nonymeHHw,~TO 

npo+wnw noeepxHocTw YWCTO cwwyCownanbwble,a ne+opMaunw -ynpyme. KpoMe Toro,cnenaHo 

npe~nOflO~eHwe, '(TO TennOO6MeH npOwCXOnwT TOJlbKO TIM, rLle WMeeTCR KOHTaKT TB@pLlblX Ten w 

0TcyTcTByeT conpoTwBneHwe 38 CYCT 3arpw3HeHww noBepxwocTeB. Tennoeaw 3anara peurewaTorH0, 

a ne$opMauww paccMaTpwBatoTcn wcxonfl w3 pe3yJlbTaTOB repua. Bblpa)KeHWe, BblBelleHHOe nna 

ConpoTnBneHwn npwC~(aTww.06Hapy~WBaeT 3&$eKT HanpaBneHHocTw. KpoMeToro.noKa3aHo,~To 

a6ConmTtio nnocKwe noBepxHocTw hdory~ cTaTb BonwwcTblMw no Mepe Toro, KaK Tenno nepenaeTcn 

OT OLIHOTO Tena KIIpyrOMy. 


